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The dynamical effects of solvent on supercoiled DNA are explored through a simple, macroscopic
energy model for DNA in the Langevin dynamics framework. Closed-circular DNA is modeled by B
splines, and both elastic and electrostatic (screened Coulomb) potentials are included in the energy
function. The Langevin formalism describes approximately the influence of the solvent on the motion
of the solute. The collision frequency v determines the magnitude of the friction and the variance
of the random forces due to molecular collisions. Thus as a first approximation, the Langevin
equation of motion can be parametrized to capture the approximate dynamics of DNA in a viscous
medium. Solvent damping is well known to alter the dynamical behavior of DNA and affect various
hydrodynamic properties. This work examines these effects systematically by varying the collision
frequency (viscosity) with the goal of better understanding the dynamical behavior of supercoiled
DNA. By varying < over ten orders of magnitude, we identify three distinct physical regimes of DNA
behavior: (i) low v, dominated by globally harmonic motion; (ii) intermediate v, characterized by
maximal sampling and high mobility of the DNA; and (iii) high v, dominated by random forces,
where all of the global modes are effectively frozen by extreme overdamping. These regimes are
explored extensively by Langevin dynamics simulations, offering insight into hydrodynamic effects
on supercoiled DNA. At low «y, the DNA exhibits small, harmonic fluctuations. Transitions to other
configurational regions are more difficult to capture in finite simulations. In the intermediate v
regime, the DNA exhibits maximal sampling of the writhe. Transition times are accelerated and
more readily captured in the simulations. A preferential lowering of the writhe from the value at the
potential energy minimum is noted, reflecting entropic effects. Only beyond a specific value of v in
this regime do we find reasonable convergence of the translational diffusion constants and velocity
autocorrelation functions. This brackets the biologically relevant regime. At high vy the DNA
supercoil fluctuates about two distinct regions of configuration space, one near the tightly wound
potential energy minimum, the other related to more open configurations. Transitions between the
two regions are infrequent. This behavior suggests two regions of free-energy minima (potential
and entropically favored) separated by a barrier. Indeed, the general dependence of the extent of
configurational sampling on the collision frequency is analogous to the isomerization behavior of
a particle in a bistable potential modeled by the Langevin equation of motion. This intriguing
parallelism suggests a favorable viscosity medium where specific internal modes, namely, global
twisting, are activated. It is possible that physiological solvent densities correspond to this region

of optimal mobility for the DNA.
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I. INTRODUCTION

An important facet of DNA’s three-dimensional
structure is supercoiling. In this supertwisted state,
the DNA double-helical axis bends and twists about
itself to form highly compact structures. Supercoil-
ing relieves the induced torsional stress introduced by
topology-regulating enzymes in closed-circular, or con-
strained, DNA systems. It thus condenses the DNA sig-
nificantly and stores energy for readily performing im-
portant biological functions.

Experimental data on supercoiling comes from gel elec-
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trophoresis, electron microscopy, drug-DNA binding ex-
periments, and other procedures [1-6]. However, the in-
formation obtained today is not of high resolution but
rather indicative of overall trends, such as sensitivity to
induced torsional stress and the ionic environment. Thus
analytical models and computer simulations have contin-
uously played a critical role in elucidating many interest-
ing features of these intriguing DNA systems and con-
necting observations to biological processes (see recent
reviews [7]).

Most of these analytical and numerical models rely on a
macroscopic, elastic treatment of DNA. That is, the DNA
is modeled as an elastic rod of circular cross section, with
bending and torsional rigidity stiffness constants incor-
porated into harmonic potentials. Additionally, repulsive
terms are usually added (e.g., van der Waals, Coulombic,
hard sphere) to model excluded volume effects. Because
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the DNA systems are large (thousands of base pairs),
a statistical mechanical treatment is appropriate. That
is, unlike small globular proteins that tend to fluctuate
near well-defined native (folded) structures, supercoiled
DNA systems are expected to be rather floppy, covering
various supercoiled states that are thermally accessible
in the natural environment. Interwound branching pat-
terns, for example, are expected to change frequently and
to depend on sequence composition as well as salt envi-
ronment. Similarly, the damping effects introduced by
the solvent are expected to alter DNA mobility and affect
many hydrodynamic properties crucial to DNA function.

Our focus in this paper is on the dynamics of DNA
supercoiling, particularly the influence of solvent viscos-
ity on the global dynamical properties of DNA. Here we
extend our previous macroscopic, B-spline model [8,9]
to mimic crudely solvent effects in the Langevin formal-
ism through the viscosity parameter. We emphasize that
the potential energy is not changed in any way; only the
coupling of the system to the heat bath is changed (see
next section). Thus in principle, equilibrium properties
will be unaltered, but dynamical properties will change.
Moreover, in practice, as we shall see, appropriate vis-
cosity modeling is computationally advantageous, since
it can accelerate configurational sampling. Furthermore,
the range of viscosity explored here provides insights into
the dynamical behavior of DNA in vacuum versus those
expected in solution.

The Langevin formalism, a modeling framework specif-
ically developed to represent solvent interactions in a
thermal reservoir [10,11], is used here to explore the
dynamics of supercoiled DNA. In its simplest form,
the Langevin equation consists of frictional and random
forces in addition to the systematic forces. These terms
mimic crudely thermal fluctuations and establish a tar-
get temperature. The key parameter 7y, the collision
frequency, controls the magnitude of the frictional term
(proportional to the velocity) and the variance of the
random force terms (details follow in the next section).
This parameter can be selected from experimental mea-
surements of viscosity and can be related to Stokes’s law
on the basis of hydrodynamic parameters (hydrodynamic
radius and mass of a solute particle and the viscosity of
the solvent).

In our previous works, a value for v was chosen so as
to focus on the intramolecular elastic and low-frequency
modes of the DNA supercoil in order to understand first
the “ideal” supercoiling response to torsional stress [8,9].
Since these harmonic motions are strongly damped by
the solvent in reality, we now continue to investigate the
effect of solvent damping on the low-frequency modes.
Specifically, we rely on the analytical framework known
for Langevin dynamics (spanning a range from inertial
to diffusive regimes) and classical transition-rate theory
to select an appropriate value of v for our macroscopic
model that qualitatively represents solvent overdamping.
We then investigate systematically the influence of sol-
vent viscosity on the dynamical behavior of DNA. In-
formation is presented on the trajectory evolution as a
function of =y, dynamical correlation functions, extent of
configurational sampling, and translational diffusion con-

stants. The behavior in a viscous medium is now far
more interesting than that obtained at a low viscosity
(in vacuo) environment: sampling is greatly enhanced,
and the qualitative features of DNA floppiness in solvent
and salt emerge readily in the dynamics simulations.

In the next section, we review the Langevin dynamics
framework, crucial to our development of an appropriate
solvent regime. The results and discussions are collected
in Sec. III, and a brief summary is provided in Sec. IV.
Further studies involving mode analysis by Fourier trans-
forms and other biologically relevant properties are avail-
able separately [12].

II. LANGEVIN DYNAMICS

The Langevin dynamics formulation is described by
the following pair of first-order differential equations:

MV(t) = —gp(X(t)) —YMV(t) + R(2), (1a)

X(t) = V(t), (1b)

where M is the diagonal mass matrix; X and V are the
collective coordinate and velocity vectors of the molecular
system, respectively; gg(X) is the gradient vector of the
potential energy E; and R(t) is a random force vector,
whose mean (R(t)) is zero, and whose covariance matrix
is given by

(ROR(E)T) = 2vkpTM5(t — t'). (1c)

The damping constant « (also called the collision fre-
quency) controls both the magnitude of the frictional
force and the variance of the random forces and there-
fore can mimic a thermal environment for the molecular
system.

The Langevin equation of motion has had a long his-
tory in molecular modeling, originating from the study
of liquids, polymers, and simple molecular reactions [11].
It provides a useful framework to study the dynamics
of complex biomolecular systems today, such as proteins
and lipid bilayer systems [10], since it attempts to de-
scribe in a simple and computationally feasible way the
internal motions of a flexible molecular system in a sol-
vent environment. Explicit modeling of water molecules
and counterions requires very large amounts of computer
time {since thousands of water molecules must be explic-
itly modeled) and, moreover, leads to many significant
stability issues that must be resolved, especially in the
context of highly charged nucleic acids [13,14].

In the simplest form of the Langevin dynamics equa-
tion, the friction kernel is assumed to be space and time
independent for each particle, and hydrodynamic inter-
actions are ignored. The influence of the environment
on the systematic, internal force of the solute molecule
is then represented in an average sense by incorporat-
ing effective frictional and restoring forces induced by
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the solvent. These additional forces are dissipative and
stochastic [see Eq. (1)], and the resulting equation can be
integrated by the same techniques as used for molecular
dynamics. However, a significant gain in computation
time is possible in comparison to explicit-solvent formu-
lations due to the reduction in the number of variables.
Furthermore, the random force terms are well known to
enhance configurational sampling [15].

For modeling supercoiled DNA, the macroscopic na-
ture of our formulation makes the Langevin approach at-
tractive. The effects of solvent, which tends to overdamp
systematic motions of the DNA, must be included to ob-
tain a physically realistic picture of DNA motion. As in
standard Langevin simulations, the key parameter is the
damping constant v, but a straightforward parametriza-
tion is not available for our B-spline model as in all-atom
simulation of proteins (where, for example, v can be re-
lated to the accessible surface area of each atom and is in
the range of 50 ps~! [10]). However, a large body of work
is available on the theory of the Langevin equation, and
we will use it here to find the most appropriate value of -y
for our system and then explore the associated dynamics.

The parameter v affects the “strength” of the coupling
between the solute and the thermal reservoir. When ~
is small, the coupling is weak and, when « is large, the
coupling is strong. The nature of this coupling affects the
behavior of the system and the rate by which equilibrium
is reached. It does not, however, change the equilibrium
itself, though in practice it can change the static averages
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obtained over a finite simulation time. At small -y, where
the intramolecular potentials are dominant, inertial ef-
fects are important, and the system’s trajectory follows
closely the Newtonian trajectory (v = 0). In this regime,
the motion is typically underdamped (y < 2w for har-
monic oscillators with natural angular frequency w), and
the energy lies close to the constant (conserved) value
corresponding to the input temperature. In the limit of
large ~y, the motion is predominantly diffusive, or Brow-
nian. The solvent environment overdamps the motion of
the system, and inertial effects are small.

Figures 1 and 2 illustrate the influence of v on the
dynamics of a one-dimensional harmonic oscillator. In
Fig. 1, we show the displacements in time (z vs t) ob-
tained from Langevin trajectories at increasing values of
~; Fig. 2 displays the corresponding phase diagrams in
position and momentum space. Clearly, the motions are
harmonic (sinusoidal) at v = 0, but as v is increased,
the solvent dephases the oscillator and leads to motion
that becomes progressively more random [1(a)-1(d)]. At
very high v, solvent damping is so strong that the sys-
tem becomes “frozen.” These trends are clearly seen in
the phase diagram series also. It should be emphasized
that in Langevin, unlike molecular dynamics simulations,
the energy is not conserved but fluctuates around the
target value; the nature of these fluctuations (widths of
envelopes, etc.) depends on . The greater the fluctua-
tions, the easier it is in practice to capture a wider range
of configurational states.
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FIG. 1. Langevin trajectories for the harmonic oscillator: z vs t. The time evolution of the position (z) for the harmonic

oscillator with potential energy V = E; (natural angular frequency w = 1 and unit mass), propagated by the Langevin dynamics
equation [Egs. 1(a), 1(b)], is shown for various v between 0 and 100w. The trajectories are propagated by the explicit (Verlet)

scheme, with a time step of 0.1, roughly one 1/60 of a period.
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The Langevin behavior can be analyzed in terms of the
Fokker-Planck equation, a stochastic partial differential
equation from which probability distributions of positions
and velocities can be calculated [11,16]. In particular, in
the high ~« limit, the Fokker-Planck equation reduces to
the diffusion equation. The Fokker-Planck equation can
only be solved analytically for simple systems, such as
harmonic oscillators, but provides a useful reference in
many situations. In particular, the Fokker-Planck equa-
tion provides a valuable framework for studying the re-
lationship between 7 and simulated transition rates in
simple systems [17]. The additional forces, such as in the
Langevin model, are necessary to study efficiently transi-
tions of a system in a solvent, such as the isomerization of
butane [10], because the statistics of transition are better
due to enhanced conformational sampling.

Transition-rate theory is also relevant to this work be-
cause the effect of v (nature of the solvent coupling) on
DNA motion can be analyzed similarly. Clearly, tran-
sitional motion for the DNA will be far more complex,
involving different favorable (and related) configurational
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FIG. 2. Langevin trajectories for the harmonic oscillator:
Phase space view. The momentum (v) is plotted as a func-
tion of the position (z) of the harmonic oscillator described
in Fig. 1.

states and possibly also buckling phenomena [18]. Ac-
cording to transition-rate theory for the Langevin equa-
tion, at low v inertial effects are too strong to be coun-
tered by the solvent and therefore transitions are infre-
quent and the rate low; as 7 increases, the transition rate
increases up to some critical value where the balance of
intramolecular and solvent effects establishes a maximal
transition rate; as v increases beyond this point, the dif-
fusive forces overwhelm inertial forces and the transition
rate of the system decreases and plateaus to the diffusive
limit.

In Fig. 3 we show the dependence of the transition
rate on the collision frequency v for a one-dimensional
bistable (double-well) potential. The curve is based on
the analytical formulation of Mel’nikov and Meshkov de-
scribing the transition rate dependence on v [19]. This
result was obtained by reformulating the Fokker-Planck
equation in terms of the action of the particle, S. The
derived normalized transition rate is

i =\/§( 'gﬂ—l)m (2)

krst

where A(8) denotes an expression calculated by numeri-
cal integration [20]:

A(B) = exp {; /0; In [1 — exp (%)] dw} . (3)

The variable krst above is the transition-state theory
value of the transition rate [21],

wp —F
= — —— 4
krst oy €XP (kBT) , (4)

where wy, is the frequency of the barrier (equal to unity
for the bistable potential studied [20]) and krgr is the
maximum value of the transition rate for a barrier height
of E. Note from Fig. 3 that the same transition rate can
be achieved at two different values of v (lower and higher
than the value corresponding to the maximal transition
rate). At the optimum ~ (highest transition rate), maxi-
mal sampling occurs. For this reason, appropriate values
of «, corresponding to maximal sampling, have been ad-
vocated for polypeptide Langevin simulations to obtain
the most reliable statistics [15]. This will also be a goal in
this work in addition to qualitative mimicking of solvent
overdamping. Thus, if we could construct a picture anal-
ogous to Fig. 3 as a function of -y for our DNA system, an
appropriate value of v will fall slightly to the right of the
value corresponding to maximal transition (sampling).
The analysis below aims at this representation.

III. MODEL, RESULTS, AND DISCUSSION

Our DNA double-helical chain is represented by a
B-spline curve [8]. The B-spline model can represent the
DNA duplex curve in terms of a small number of con-
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FIG. 3. The dependence of the transition-rate constant on 7 for a bistable potential. The normalized transition rate
(k/krsT, where krst is the transition rate predicted by transition-state theory) is plotted as a function of « for the particle in
a bistable potential. See Egs. (2)—(4) of the text for details.
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FIG. 4. Snapshots of supercoiled DNA dynamics. Four representative frames from each of three DNA trajectories with
different values of v are shown. The top, middle, and bottom rows (each in order of left to right) correspond to the three
v values of sets 1, 9, and 12 of Table I. The images were generated by the molecular graphics program MOLSCRIPT [22] in
combination with the graphics interface written by Kreatsoulas.
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trol points which are then used to define any given num-
ber of curve points [8] (see color Fig. 4 prepared with
MOLSCRIPT [22]). The elastic-based energy function con-
tains bending and twisting terms and a Debye-Hiickel po-
tential to represent screened Coulombic interactions [9].
Additionally, a harmonic term is included to ensure that
the total chain length remains close to its target value.
For further details of the representation and the potential
energy function, see Refs. [8,9].

All simulations are reported for a 1000 base-pair DNA
system, modeled by 14 B-spline control points, in a uni-
valent salt concentration of 0.1M and a temperature of
300 K. The linking number difference ALk (a measure of
torsional stress with respect to the relaxed state) was
fixed at 5 for all simulations corresponding to typical
magnitudes of physiological superhelical densities (o =
ALk/Lko ~ 0.05) [8]. The elastic and electrostatic con-
stants are used as in previous works: A = 1.2755 x 101
ergcm, corresponding to the nonelectrostatic contribu-
tion to the bending constant, along with A/C = 1.5 [9].
The varied parameter v ranges from 103 s~ to 103 s~ 1,
Table I summarizes the various parameters used in the
simulations. Each trajectory is started from the equilib-
rium interwound structure associated with a salt concen-
tration of 0.1 M and with ALk = 5, as computed in Ref.
[9] (see structures in Fig. 4, third row). This potential en-
ergy minimum was the lowest one identified by truncated
Newton minimization from a variety of starting points.
Another three-lobed minimum has been observed (with
Wr = 1.97) with these parameters (higher in energy) [9],
but we have not observed transitions to this family of
structures during our simulations. Transitions between
the interwound and the lobed structures must overcome
a high energy barrier, one which will become easier to
surmount for longer chain lengths. Indeed, this is sup-
ported by simulations for a 2000 base-pair DNA model
[12]. In general, we expect more frequent transitions be-
tween various families of minima [18] for longer DNA
chains. For a minimization and energetics study of the

TABLE I. Trajectory parameters. All trajectories have a
linking number difference ALk = 5 and are started from the
equilibrium structure (Wr = 2.05) in a salt concentration of
0.1M. All simulations are performed using the LI integration
scheme with an integration time step of 7 (see text and Ref.
[24]) for 60000 iterations. The trajectories in set 12 were
propagated twice as long (120 000 iterations) for Fig. 8.

Set v (s71) Number of Trajectories
1 9.77x10?% 1
2 9.77x10° 1
3 9.77x108 4
4 3.52x10%° 1
5 4.79x10'° 1
6 6.25%x10'° 1
7 9.77x10° 4
8 1.52x10"! 1
9 3.91x10 4
10 8.80x 10! 4
11 2.44x10'2 1
12 9.77x10'2 4
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various DNA potential energy minima for our B-spline
model, and related buckling catastrophes, see [18,9].

We use the implicit (“LI”) numerical scheme
(Langevin-implicit-Euler) [23,24] to integrate
the Langevin equation of motion. The input integra-
tion time step is 7 = 2At (At = 48.8888 fs) but must
be related to the physical time step by calibration [25].
Our best current estimate is 7 ~ 1 ns at moderate sol-
vent damping [12]. LI provides a computational speedup
of close to three in comparison to the explicit (Verlet)
integration scheme. For example, on an SGI/Crimson
computer with a 50 MHz IP17 processor, LI requires 5 h
with a time step of 7 to cover the same total simulation
time as a Verlet integrator with a time step of 0.057 for
120000 iterations (14 CPU hours). Numerical damping
issues [26] are only relevant here at very low v values,
because the high-frequency modes are generally absent,
unlike all-atom systems.

A. Time evolution of the writhe

The writhing number (Wr) of the DNA supercoil is a
geometric characteristic of shape that can be determined
rigorously by the Gauss double integral [27]. Intuitively,
this integral averages the number of signed self-crossings
of the DNA duplex over an infinite number of projec-
tions [27]. To illustrate, a circle has a writhe of zero;
an ideal figure-eight interwound structure has a writhe
of one, and an ideal interwound supercoil with two su-
perhelical nodes has Wr = 2. Of course, Wr is in general
nonintegral. Since Wr is an important descriptor of DNA
geometry and a conceptually meaningful parameter, we
use the writhe of trajectories (evolution in time) and as-
sociated distributions to describe the nature and extent
of conformational sampling during our molecular dynam-
ics (MD) simulations.

In Fig. 5 we present the time evolution of the writhe,
for a set of eight Langevin trajectories. The initial condi-
tions for these trajectories are identical: each trajectory
is started from the potential-energy-minimum (PEM)
structure with Wr = 2.05; the trajectories differ only in
the value of the collision frequency 7 used in the Langevin
equation (see Table I). Panels (a), (b), (c), etc., are la-
beled in the right-hand corner corresponding to the «
values in Table I, with 1 referring to the smallest value
of v (977.7 s71) and 12 referring to v = 9.77 x 1012 51,

Overall, the pattern of DNA fluctuations as a function
of solvent damping (Fig. 5) resembles strikingly the pat-
tern of Fig. 1 (bistable system). At small values of «
(resembling in vacuo environments) the fluctuations are
nearly sinusoidal [panels (a) and (b)]; as <y is increased,
a progressive dephasing occurs [panels (c)—(f)], and be-
yond a critical v the system is essentially frozen [panels
(g), (h)].

In the near-vacuum regime [panels (a)—(c)], the writhe
fluctuates closely about the initial (PEM) writhe value.
As mentioned above, numerical damping at low v de-
creases the magnitude of the observed fluctuations. An
explicit simulation performed at this -y regime reveals the
same qualitative fluctuations in time but, over very long
times, also samples regimes distinct from the potential
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FIG. 5. Evolution of the writhe. The writhe (Wr) of the DNA as a function of time (iteration step) is shown for DNA
trajectories started at the potential energy minimum (Wr = 2.05). Panels (a)—(h) show trajectories propagated with increasing
values of 7. The number in the right-hand side of each panel refers to the corresponding + for the trajectory (the “set” number)

listed in Table I.

energy minimum. Note the striking sinusoidal “beat”
pattern in panels (a) and (b), implying the existence of
two close frequencies. As 1 is increased beyond 9.77x10"!
57!, the harmonic structure and the beat pattern of the
time series are destroyed [panels (d)—(h)]. In panels (d)-
(f) the writhe fluctuations are much larger than at other
solvent densities. Close inspection of these fluctuations
reveals another interesting trend: there is a preferential
lowering of the writhe in these panels. Though writhe
values above Wr = 2.05 can be noted, they are com-
paratively smaller and far more rare than deviations be-
low Wr = 2.05. Furthermore, the trajectories in pan-
els (d)—(f) tend to sample certain values of the writhe
(1.0 <Wr< 1.5) more often than others. This selective
lowering of the writhe is a consequence of entropic contri-
butions and suggests the existence of a free-energy mini-
mum at a lower writhe value. We will come back to this
phenomenon later.

To reinforce these results, we examine the dynamics
snapshots at the different solvent regimes (Fig. 4). The
harmonic nature of the DNA motion at low ~ clearly
emerges from the views associated with v = 9.77 x 102
s~! (set 1 of Table I), presented in the top row. Very elas-
tic fluctuations—bending and twisting about the global
helical axis—can be seen, as expected from an elastic
material. The figures from the trajectory with higher
(3.91 x 10 571, set 9 of Table I) shown in the middle
row reveal very open, loosely supercoiled, and asymmet-
ric forms. Thus the solvent-dependent lowering of the

writhe is evident. In particular, the first two frames of
the middle row show two frequently visited DNA config-
urations (Wr = 1.14, first frame, and Wr = 1.43, second).

These results demonstrate the profound influence of
the solvent on the motion of DNA supercoils. In vacuum,
or at low density of solvent, the DNA’s motion is glob-
ally harmonic (bending and twisting about the long and
short axes of the interwound structure, see [8]). As the
density of the solvent increases progressively, such global
modes are dephased steadily, until finally the motion of
the DNA supercoil is completely dominated by the sol-
vent collisions (e.g., see bottom row in Fig. 4). Moreover,
the trend of writhe lowering due to thermal fluctuations
clearly emerges.

B. Mean and standard deviation of the writhe

For each trajectory, we now calculate the average
writhe and determine the associated error bars where
possible. The accuracy of an equilibrium average (A)
computed from a simulation of NV steps can be estimated
from the variance 02(A), obtained from K trajectories
that span the appropriate phase space:

1

o*(4) = 5 )_((Aw — (4)k)?, (5)

M =

k=1
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where (A)j is the average of A over trajectory k, and
(A)k is the average over all the K trials. Thus the length
of the error bar is |0(A)|. We compute this quantity
for the five sets of four trajectories (associated with the
same value of ), as shown in Table I. Each trajectory
in the set is started at the same (enthalpic-minimum)
structure, but has different initial velocity assignments
(same temperature, different random seed).

In Fig. 6 we plot on a logarithmic scale the mean
writhe (Wr), and associated error bars, for the DNA
trajectories (Table I). From this view, a very interest-
ing pattern emerges. In the vacuous environment, the
mean writhe coincides with the equilibrium value found
by minimization (Wr~ 2). As solvent effects are incorpo-
rated, the mean Wr decreases due to entropic contribu-
tions. Indeed, we have demonstrated previously the ther-
mal lowering of Wr during dynamics simulations [8,18].
However, this effect is very pronounced here. In particu-
lar, we see a notable minimum in (Wr) around 2 x 10%°
s7! < v < 2 x 102 571, This result underscores the
fact that dynamical means do not necessarily coincide
with the static means when thermal fluctuations as well
as external factors are incorporated [28]. The coupling
to the heat bath affects substantially the rate at which
equilibrium distributions are reached.

C. Barrier crossing

We plot in Fig. 7 the writhe envelope as a function
of -y, showing both standard (top panel) and logarithmic
(bottom) axes for y. We define the writhe envelope as the
mean deviation from the writhe of the PEM structure (as
opposed to the deviation from the average writhe of the
trajectory in the definition of the standard deviation o).
This notion of a writhe envelope can better estimate the
extent of trajectory sampling than the standard deviation
when, for example, the writhe distribution is bimodal
or trimodal. We see a particularly broad peak for the
Wr envelope in the region around 2 x 10° s7! < v <
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2 x 102 s~1 the same region where the lowering of the
mean writhe is observed. The overall shape of this curve
resembles closely the semianalytical pattern obtained for
the transition rate in a bistable potential, shown in Fig. 3.

The shape of the writhe envelope as a function of v
and the evidence of a free-energy minimum, distinct from
the zero-temperature enthalpic minimum, might suggest
a condensed-phase reaction involving a barrier crossing,
such as a particle governed by a bistable potential (Sec.
II). Is it possible to analyze the pattern of conforma-
tional sampling observed here in terms of a barrier cross-
ing event involving two minima, one narrow at the PEM
form (Wr = 2.05) and one broader near Wr~~ 1.4? Cer-
tainly, we expect the behavior of DNA to be much more
complex than that of a particle in a bistable potential,
but interesting analogies might be made.

To explore this intriguing connection, we show in Fig.
8 the time evolution of the writhe for five different tra-
jectories in the high v regime (y = 9.77 x 10!2 s71), all
started at the PEM structure (Wr = 2.05) but differing
in initial velocity assignments (different random seed).
We observe a common pattern in these trajectories: the
DNA remains near the starting configuration for around
20000-30000 iterations and then jumps to a new config-
uration (Wr~ 1.4) around which it oscillates for a long
time (roughly 50000 iterations) and then proceeds to a
more open structure, the figure-eight interwound struc-
ture [panels (a), (b)] or to the tighter PEM form [panel
(d)]. [In panel (c), fluctuations between Wr = 1 and
1.4 occur.] This pattern resembles strikingly a barrier
crossing event. For reference, the total energy (bending,
twisting, and Debye-Hiickel) for the Wr = 2.05 form is
244.1 kcal/mol with associated components for bending
and twisting of 5.55 and 6.19 kcal /mol, respectively. The
states at Wr = 1.4 and 1.0 do not correspond to en-
thalpic minima at the superhelical density of the trajec-
tory (o = 0.05) and therefore have an associated range of
energies. However, from an average of 4893 dynamically
observed structures with Wr = 1.40+0.03, we obtain the
estimate of 253.29 + 1.98 for the total energy, 6.63 4 0.82

FIG. 6. The mean writhe (Wr) as a func-
- tion of v. Error bars are computed for the
b sets described in Table I where we have com-
puted four trajectories. Thus there are error
bars shown for sets 3, 7, 9, 10, and 12. The
error bars for set 3 are so small that they are
not visible; thus, we expect that error bars
: for v < 10® 57! (sets 1 and 2) would also be
] small [see Figs. 5(a) and 5(b), Eq. (5), and
discussion in text].
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for the bending energy (Eg), and 9.20+0.15 for the twist
energy (Er). Similarly, for an average over 3753 struc-
tures with Wr = 1.001+0.03, we obtain the estimate of
254.0 £+ 1.92 for the total energy, 5.72 + 0.82 for Eg, and
11.36 = 0.16 for E7 (all units in kcal/mol).

For the particle in a bistable potential, the maximum
sampling is found for w/vy ~ 2.9 [20,10], where the an-
gular frequency w = 2wy with v denoting the frequency
of the barrier. Using this estimate and our observation
that the broad maximum in the writhe envelope occurs
at 2 x 101 s7! < 4 < 2 x 10'2 57!, we estimate the
frequency of the DNA reaction mode to be in the range
9x10° s7! < v < 9 x 10! 57!, This is a broad range
of solvent density, but we expect the relevant frequency,
v =~ 2.9v/27, to be at the lower end of this range. On the
basis of visual inspection of the trajectories, we speculate
that the excitation of a global twisting mode leads to the
conformational sampling seen in the writhe fluctuations.
This slow mode has a frequency of roughly 9 x 10° s—*.

Another observation that might point to a free-energy
barrier between the two preferred forms noted above is
the configuration profile obtained as a function of ALk
[9]. At the salt concentration examined here, two config-
urational regimes were identified: the figure-eight family
(with Wr ranging from 0.9 to 1.2) and the interwound
family with two self-crossings (Wr between 1.6 and 2.2)
([9], Fig. 5). Thus the unfavorable range of Wr values
between 1.2 and 1.6 was associated with a “buckling”
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catastrophe, an abrupt change from a point to a line of
contact [18]. This transition occurs with a sudden rise
of bending energy accompanied by a sharp drop in twist
energy. Although the superhelical density is fixed in our
dynamical simulations, and thermal fluctuations make
possible a wider range of stable forms, this interplay be-
tween the bending and twisting energy may contribute
here also to an energy barrier.

D. Writhe autocorrelation

To examine the detailed dynamical fluctuations at
each solvent environment, we examine the writhe auto-
correlation functions for the DNA simulations. The un-
normalized autocorrelation function for Wr is given by

Cwrwe(t) = (Wr(0)Wr(t)) — (Wr)?, (6)

where (Wr) denotes the mean writhe over the trajectory.
For highly correlated data, it is better to subtract the
mean from the trajectory values before ensemble averag-
ing [29] to result in

Cwewe (t) = ([Wr(0) — (Wr)] [Wr(2) — (Wr)] ). (7a)
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FIG. 9. Writhe autocorrelation functions as a function of 4. The writhe autocorrelation function [see Egs. 7(a), 7(b)] is
plotted as a function of iteration for seven trajectories of different v. The number in the right-hand corner of each panel refers

to the « set listed in Table I. Writhe autocorrelation functions for trajectories with v > 8.8 x 10 s

=1 could not be computed

accurately as the DNA is so immobile at this solvent density (see Fig. 4, bottom row) that there are few statistical samples per

trajectory.
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Thus the normalized autocorrelation function is given by
6WrWr(t) = CWrWr(t)/CWrWr(O)' (7b)

We present, in Fig. 9, the writhe autocorrelation func-
tions [Eqs. (7a) and (7b)] for nine selected trajectories
(labeled according to the corresponding «y value listed in
Table I). The effects of viscosity on the configurational
sampling of DNA are dramatic. In vacuum [panel (a)],
the correlation function is highly harmonic, much like
a set of correlated harmonic oscillators. The sinusoidal
behavior can still be seen at low solvent densities [pan-
els (b), (c)], but damping and collision-driven dynamics
increase as more solvent-solvent and solvent-solute colli-
sions are considered. Furthermore, different qualitative
patterns emerge at low medium and high-density solvent
environments. At the intermediate v values examined
here [y = 9.77x10%°, 1.52x 10!, and 3.91x 10! s~; pan-
els (d), (e), (f), respectively], the rapid oscillatory be-
havior of Cw,w:(t) at the vacuous range is replaced by
a slowly oscillating and decaying function. Thus correla-
tions still remain over the entire simulation (60000 iter-
ations) at this solvent regime, but are not as pronounced
as in the harmonic-elastic regime [panels (a)-(c)]. As
viscosity increases, the dynamical quantities decorrelate
steadily and slowly [panel (g)] until, at high viscosity, the
DNA becomes so immobile (see bottom row of Fig. 4)
that it is not possible to compute a reasonable writhe
autocorrelation function for this length of simulation (es-
sentially all points are correlated). Here, DNA motions
are so strongly dominated by random forces that inertial
forces play an insignificant role in directing mobility. Any
concerted motion needed to twist or untwist the inter-
wound structure (to reach other conformational states)
cannot be sustained.

To further quantify the behavior of the writhe autocor-
relation function, we estimate the standard deviation of
Wr, over a single trajectory, by the procedure described
below. Further analysis is warranted because the fluctua-
tions in writhe reflect a concerted motion of the DNA, one
of the slowest modes of the system. Indeed, in general,
our trajectories are not much longer than the decorrela-
tion time of the writhe, 7w, (estimated by the procedure
described below).

Ideally, the standard deviation computed by Eq. (5)
serves as an indicator of the accuracy of an equilibrium
average computed from a set of simulations. In prac-
tice, however, the statistics obtained from large-scale
biomolecular simulations are limited by computer time.
Even if the computational limitations were overcome, the
issue of correct (microcanonical or canonical) sampling
of the phase space, for even small systems, is challenging
and forms an active area of research [30]. Thus it is use-
ful to estimate 02(A) from one simulation [10]. The time
correlation functions described above provide the basis
for such an estimate. For a single trajectory of length
Trun, the estimated variance for a property A, 6(4), can
be obtained from [10]

2 st Gaade, ()
T’I‘un 0 Trun a4 ’

52(A) =

GOMATHI RAMACHANDRAN AND TAMAR SCHLICK 51

where C44(t) is the corresponding correlation function.
In the event that the trajectory is much longer than the
decorrelation time 74, defined as [10]

= (A(0)A(1)) — (4)*
TA = dt, 9
e ©
it can be shown that Eq. (8) for the variance in terms of
the autocorrelation function reduces to a simpler expres-
sion in terms of (A) and (A?):

2TA
Trun

G2(A) ~ [(4%) — (4)?]. (10)

This formula can be interpreted as the “error in the
mean” for a set of Ty,,/274 independent samples.
From the autocorrelation functions shown in Fig. 9, we
calculate 6(Wr) for each trajectory [Eq. (8)] and from
this, estimate Tw; using Eq. (10). We plot these two
quantities in Fig. 10, with the right-hand ordinate show-
ing the units for 6(Wr), and the left-hand ordinate show-
ing those for the estimated decorrelation time 7w,. This
figure provides a more quantitative measure of the degree
of conformational sampling expected at different solvent
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FIG. 10. Estimated writhe decorrelation times and esti-
mated standard deviation as a function of y. The writhe
estimated decorrelation times #w, are computed from the es-
timated standard deviation [6(Wr)] over one trajectory [Eq.
(8)] and the relation of the estimated standard deviation to
the mean and variance of the writhe over a single trajectory
[Eq. (10)]. The writhe decorrelation times are reported in
units of iteration on the left-hand ordinate (o). The estimated
standard deviation [computed from the autocorrelation func-
tions using Eq. (8)] is plotted on the same plot (e) with the
right-hand ordinate showing the scale in units of the writhe.
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environments: the lower the value of 7w; the greater
the sampling. Thus maximal sampling appears in the
medium v range, as identified by Fig. 9. Note how the
estimated error in the mean [6(Wr)] can be small when
the estimated decorrelation time (7w;) is large; this will
be the case when the fluctuations around the mean value
are small, even though fluctuations are highly correlated,
as in the harmonic (small ) regime. Similarly a small
relaxation time 7w, can be associated with a large esti-
mated error in the mean, due to the large fluctuations
(intermediate -y regime). This large estimated error does
not necessarily imply poor statistics: as we see in Fig. 6
the error in the mean [0(Wr)] computed in the standard
fashion [Eq. (5)] is fairly small in the intermediate
regime. A high 6(Wr) in this case indicates that a mean
reflects several configurational states.

The autocorrelation functions together with the er-
ror approximations and estimated decorrelation times of
the writhe demonstrate strikingly the influence of v on
the dynamical behavior of our DNA. At low and high
~ regimes, trajectories are essentially correlated (in Wr)
for all times; it is only in the intermediate « regime that
decorrelation occurs to any significant extent. Figures 9
and 10 show clearly that DNA fluctuations in the inter-
mediate solvent regime reflect the widest conformational
sampling. Thus equilibrium distributions are more read-
ily attained in finite simulation times.
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E. Velocity autocorrelation functions

The role of viscosity in maintaining or destroying
various dynamical properties can be further examined
through the autocorrelation function of the trajectories’
velocities. We calculate the normalized velocity autocor-
relation function, defined as

Cyv(t) = (V(0) - V(t)) = (V)?/[(V(0) - V(0)) — (V(>12]1,)

where V is the velocity vector, (V) denotes the mean
velocity over time, and the dots indicate vector inner
products. Two methods of averaging are possible: based
only on the center of mass velocities (V.,,.), or involving
all velocity vectors of the independent variables (curve
points in our representation). Averaging over each curve
point has the advantage of revealing the time-dependent
pattern among the DNA curve points.

In Fig. 11 we first present the velocity autocorrelation
functions computed using the center of gravity vectors for
nine trajectories (Table I). In panels (a)—(c) of Fig. 11,
correlations throughout the entire trajectory are indi-
cated. This is expected in the harmonic, elastic regime.
In panels (d)—(f) decorreiation is much faster (note the
scale on the abscissa is ten times shorter to resolve the
decorrelation), though some small correlations do persist
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FIG. 11. Velocity autocorrelation functions averaged over center-of-mass (c.m.) vectors of the DNA chain. Velocity auto-
correlation functions are computed using the center-of-mass vectors in Eq. (11) and plotted as a function of the iteration,
for trajectories of different y. The z, y, and z components of the autocorrelation function are plotted separately; the thick
dashed line (— — —) represents the x component; the dotted line (---) the y component; and the short-dashed line (- - -) the
z component. The numbers in the right-hand corner of each panel refer to the set number in Table I. Note the change of scale

in the abscissa in each row of panels.
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for a short time. Thus solvent acts to quickly damp out
dynamic correlations in the system. At high viscosity
[Figs. 11(g)-11(i)] velocity decorrelation occurs almost
instantaneously (again note the change of scale of the
abscissa).

Next, Fig. 12 shows the velocity autocorrelation func-
tions computed by averaging over the curve points. The
origin of the long time correlation in the harmonic regime
[Figs. 11(a)-11(c)] is clearly due to the extensive correla-
tions between curve points [see Figs. 12(a)-12(c)]. This
is expected in a closed elastic material, where a stretch in
one region commands a response in another. At medium
and high solvent density environments, positional corre-
lations along the chain are much weaker [compare Figs.
12(d)-12(i) to 11(d)-11(i)].

F. Translational diffusion constants

One available hydrodynamic measurement for DNA
is the translational diffusion coeflicient D, [5]. This quan-
tity, a measure of overall mobility, can be estimated by
using dynamic light scattering for linear and supercoiled
DNA molecules as a function of length and salt concen-
tration. There are several ways to calculate D; from com-
puter simulations: from velocity autocorrelation func-
tions, Fourier transforms [31], or root-mean-squared fluc-
tuations [32]. Here we estimate D; over long trajectories
of length ¢, by the Einstein-Stokes expression:

GOMATHI RAMACHANDRAN AND TAMAR SCHLICK
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6tDy(t) = (| Xe.m. (') — Xem. (' +1) ), (12)
where X, ,,. is the center of mass position vector of the
DNA supercoil.

In Fig. 13 we plot the translational diffusion constants
D,(t) for nine trajectories (Table I). The value of D,
shown at each time ¢ reflects an average over all pos-
sible subtrajectories of length ¢ [i.e., over many starting
points t' in Eq. (12)]. The three patterned lines in Fig. 13
correspond to diffusion constants along the z, y, and z
axes, and the thick solid line corresponds to the averaged
quantity over the three directions. The function Dj is re-
ported in units of m?/7, where 7 is our integration time
step. Again, we clearly identify three distinct regimes for
supercoiled DNA: (1) the low viscosity regime [panels (b)
and (c)] where D, has not converged by the end of the
trajectory, (2) the intermediate viscosity regime where
D, converges in the time span of the simulation, and (3)
the high viscosity regime where D; converges rapidly due
to the dominance of random forces. Note that the trajec-
tory with v = 9.77 x 102 s~! [panel (a)] appears to have
a small, converged value for Dy; this results from uncom-
pensated numerical damping, which occurs at very low
values of v [23].

In many of the views, a dominant direction emerges
corresponding to the z axis of the DNA supercoil, which
exhibits maxima and possibly minima (at medium sol-
vent density). This can be explained by the initial po-
sitioning of the long extended interwound along the z
axis.
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FIG. 12. Velocity autocorrelation functions averaged over all curve points of the DNA chain.
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Velocity autocorrelation

functions are computed using the curve point vectors in Eq. (11) and plotted as a function of the iteration. The z, y, and z

components are labeled as in Fig. 11 (see Fig. 11 caption).
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FIG. 13. Translational diffusion coefficients for the various 7 regimes. Translational diffusion coefficients (D:) are computed
using Eq. (12) and plotted as a function of the iteration. The z, y, and z components of the velocity autocorrelation function
are plotted separately and are marked in panel (b) [in panel (a) the lines are indistinguishable].

In the harmonic regime [panels (b), (c)], D; tends to a
large value, but convergence has not been achieved during
the course of the simulation. The long time correlations,
evident in the velocity autocorrelation functions for this
regime [Figs. 11(b) and 11(c) and 12(b) and (c)], indicate
that an estimation of D; from trajectories of such length
is impossible [31]; a much longer trajectory or possibly
an ensemble of trajectories is necessary to compute Dy
in the low v regime.

At higher viscosity environments (v > 9.77 x 108 s71)
the translational diffusion constant behaves as expected:
monotonic decrease with increasing 7, due to increase
of random forces. In the intermediate solvent regime
the convergence is fairly good, whereas in the high sol-
vent regime the convergence is very rapid. Clearly, the
strength of coupling between the DNA and the heat bath
affects in practice the convergence of important hydrody-
namic properties.

G. Systematic versus frictional forces

To explore further the behavior at different viscosi-
ties, we show in Fig. 14 the ratio of the magnitude of
the gradient to the magnitude of the friction (averaged
over 10000 iterations) as a function of v [first to sec-
ond term in the right-hand side of Eq. 1(a)]. There is
a dramatic decrease of over eight orders of magnitude in
this ratio as 7 increases from 9.77x10% s~! to 9.77x 1012

s~1. This explains and reinforces all analyses performed
in this work. In the low ~« regime, the DNA motion is
entirely dominated by the systematic forces (the gradient
of the potential energy is between two and eight orders
of magnitude larger than the frictional force). At inter-
mediate vy, frictional forces have a strong effect on the
DNA motion but are not the dominant forces; the sys-
tematic force in this range is between two and ten times
the frictional force. At high - the frictional force is larger
than the systematic forces and therefore dominates the
motion of the DNA.

The effects of solvent-induced friction on the motion
of the DNA can be seen qualitatively from Fig. 4. In
the harmonic regime, where systematic forces dominate
by several orders of magnitude (eight over the frictional
forces), the DNA is globally harmonic (top row). In the
intermediate -y regime (middle series) an interplay of ran-
dom and inertial forces twist and bend the DNA fluidly
through the solvent, though the random forces frequently
reorient and reshape the polymer. When solvent damp-
ing is very strong (bottom sequence), the DNA macro-
molecule is entirely dominated by random forces and is
virtually immobile.

IV. SUMMARY AND CONCLUSIONS

We have analyzed the effects of viscosity on the dy-
namics of supercoiled DNA. We wanted to explore the
role of thermal damping in the natural cellular environ-
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FIG. 14. Ratio of systematic to frictional forces in the Langevin formulation. The magnitude of the ratio of the systematic
force to the frictional force (terms 1 and 2 on the left-hand side of [Eq. 1(a)], averaged over iterations 10 000 — 20 000, is plotted
as a function of . Panel (a) is plotted on a log-log scale, and panel (b) is logarithmic only in the ordinate. Different symbols
are used to distinguish points in the high (filled circles), medium (starred circles), and low (open circles) « regimes.

ment and also to establish an optimal numerical tool. A
systematic analysis of the influence of the solvent on both
the statistical (sampling in finite time) and dynamical
(kinetic) aspects of closed-circular DNA motion has been
presented. The level of this analysis is qualitative and
semiquantitative, compatible with our simplified macro-
scopic model of DNA, namely, that of a charged elastic
rod. We summarize our main findings below.

(1) Hydrodynamic effects on DNA motion. Solvent
viscosity plays a major role in determining DNA mo-
bility. Solvent interactions do not indiscriminately over-
damp all the internal global harmonic modes of DNA,
but rather selectively activate or deactivate key internal
modes. Thus as solvent density increases, a qualitative
difference emerges in the motion of the supercoiled DNA.
At low v the DNA behaves in a globally harmonic fash-
ion, and at high « the inertial forces of the DNA are
overdamped and transitions are infrequent. In the inter-
mediate v regime, however, the DNA is more mobile and
flexible than at both extremes—significantly even more
than the harmonic regime. The bending and twisting
modes appear to have been activated at this critical vis-
cosity, leading to enhanced configurational sampling in
practice.

(2) Accelerated sampling of free-energy minima. Po-
tential energy minimization from the circle and the in-
terwound structure lead to a single, tightly interwound
structure with Wr = 2.05 at the particular set of pa-

rameters used here. The accelerated sampling seen in
the intermediate « regime, however, reveals more favored
configurations that are significantly less tightly wound
than the enthalpic minimum. They cluster near configu-
rations with Wr = 1.4. It is thus possible that thermal
fluctuations lead to configurational states that are ener-
getically competitive with the enthalpic minimum. At
high v, we still note transitions to this free-energy min-
imum, but they are infrequent over the same simulation
length due to the deactivation of the global modes, ap-
parently necessary for concerted motions. This evidence
of a free-energy minimum, distinct from the enthalpic
minimum, further underscores the importance of consid-
ering thermal effects on DNA structure and mobility in
solution.

(3) DNA sampling in solution as a barrier cross-
ing event. The configurational sampling of the DNA
as a function of v bears a strong resemblance to the
transition-rate dependence on «y of a particle in a bistable
potential—the archetypal barrier crossing problem. This
interesting similarity suggests that the sampling of the
two free-energy minima by the DNA could be described
as a condensed-phase barrier crossing event. Here, the
solvent might serve to activate the reaction path by turn-
ing on or off specific internal modes. The mechanism for
mode activation is still not well understood for the simple
case (particle in a bistable potential), but it is fascinat-
ing that a problem of much greater complexity, such as
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DNA dynamics, shares similar characteristics. By anal-
ogy to the particle in a bistable potential, we suggest
that a global twisting mode describes the pathway for
transition between the two minima.

The above results show that solvent in the DNA en-
vironment exerts a profound qualitative and quantitative
influence on the dynamical behavior of supercoiled DNA.
This influence is more than just a systematic trend of
overdamping as a function of v, but rather one which
isolates distinct physical regimes of DNA behavior. Com-
putationally, a moderate viscosity is favorable, because it
enhances configurational sampling significantly and thus
leads to more rapid convergence of equilibrium distribu-
tions. On the basis of the physical and computational
considerations discussed throughout this work, we con-
clude that an appropriate choice of v for our model lies
in the intermediate v regime (10! s7! < 4 < 10!2
s™1). This viscosity regime incorporates appropriate sol-
vent damping and, therefore, the thermal fluctuations
expected from long floppy DNA systems. In addition,
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configurational sampling is increased significantly due to
an optimal balance between internal and frictional forces.
Further explorations of the biological implications of such
solvent and solute dynamic interactions in topologically
constrained DNA systems will be reported separately
[12].
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FIG. 4. Snapshots of supercoiled DNA dynamics. Four representative frames from each of three DNA trajectories with
different values of v are shown. The top, middle, and bottom rows (each in order of left to right) correspond to the three
v values of sets 1, 9, and 12 of Table I. The images were generated by the molecular graphics program MOLSCRIPT [22] in
combination with the graphics interface written by Kreatsoulas.



